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Hyperspectral Band Selection via Adaptive Subspace
Partition Strategy

Qi Wang

Abstract—Band selection is considered as a direct and effective
method to reduce redundancy, which is to select some informative
and distinctive bands from the original hyperspectral image cube.
Recently, many clustering-based band selection methods have been
proposed, but most of them only take into account redundancy
between bands, neglecting the amount of information in the subset
of selected bands. Furthermore, these algorithms never consider
the hyperspectral bands as ordered. Based on these two facts,
we propose a novel approach for hyperspectral band selection
via an adaptive subspace partition strategy (ASPS). The main
contributions are as follows: 1) the ASPS is adopted to partition the
hyperspectral image cube into multiple subcubes by maximizing
the ratio of interclass distance to intraclass distance; 2) unlike
previous methods, we estimate the band noise and select the band
containing minimum noise (high-quality band) in each subcube to
represent the whole subcube; and 3) adaptive subspace partition
is viewed as a general framework and thus forms the variant
version. Experimental results on three public datasets show that
the proposed method achieves satisfactory results in both accuracy
and efficiency than some state-of-the-art algorithms.

Index Terms—Adaptive subspace partition, band selection,
hyperspectral image, noise estimation.

1. INTRODUCTION

YPERSPECTRAL images acquire information about ob-

jects of interest through large and narrow electromagnetic
bands. Compared with an RGB image, these bands can provide
more abundant spectral and image information, which can better
describe the spectral characteristics of the object and improve the
detection and recognition ability [1]. Therefore, it is widely used
in various research fields, for instance, vegetation area estima-
tion [2], environmental protection [3], and mineral exploration
[4]. Although these bands present more information for rele-
vant image processing, they also bring some obstacles, such as
high redundant information and high computational complexity,
which is not conducive to subsequent image analysis. Hence, it
is extremely necessary to reduce lots of redundant information
and time complexity.
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In general, there are two kinds of approaches, feature ex-
traction [5], [6] and feature selection (band selection) [7]-[13],
to reduce dimensionality for a hyperspectral image. These two
types of methods select or extract data from all hyperspectral
bands to represent the whole spectral cube, and the results are
approximately equal to those of all bands. For the former, it
maps high-dimensional spatial data into low-dimensional space
based on certain criteria and extract a new feature subset to
represent the original hyperspectral data. The typical methods
include principal component analysis [14], linear discriminant
analysis (LDA) [15], [16], maximum noise fraction [6], and
independent component analysis [5]. However, through spatial
transformation, the physical meaning of the original hyperspec-
tral data is changed, and some key information is lost. For the
latter, this type of methods selects a distinctive and representative
subset from the original hyperspectral data without loss of
physical meaning and information, which preserves the inherent
properties of the hyperspectral data. In this article, we turn our
attention to band selection.

Hyperspectral band selection is one of the key steps in the
preprocessing of some algorithms, which has attracted many
scholars’ attention in recent years. Unlike the traditional feature
selection methods, the principle of band selection is to make
the band subset have low correlation and large amount of infor-
mation, which can not only greatly reduce the data dimension
of hyperspectral image cube, but also retain more complete and
useful information. According to whether the sample is labeled
or not, the existing band selection methods can be classified
into two main parts: supervised [17]-[19] and unsupervised
[20]-[24]. Supervised methods are to select the optimal bands
by training and learning based on labeled samples. Although this
type of methods can achieve better results, the training process is
relatively complex, and labeled samples are often not available
in practice. Unsupervised methods only need to select a subset
from the hyperspectral bands through some evaluation criterion
function without using labeled samples. The main criteria are
as follows: information divergence [25], maximum ellipsoid
volume [26], Euclidean distance [27], [28], etc. Overall, un-
supervised methods are preferable.

Among these band selection methods, the clustering-based
methods [8], [11], [24], [25], [29] appeal to our attention. These
methods can obtain satisfying results, but they always have
two inherent shortcomings in the clustering process. On one
hand, most of them only take into account correlation between
bands, neglecting the amount of information in the subset of
selected bands [11], [24], [25]. Obviously, these do not satisfy
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the principle of band selection. On the other hand, according
to the characteristics of a hyperspectral image cube, we find
that the bands are arranged in order. In addition, for a band,
it has stronger correlation with the adjacent bands within a
certain range and low correlation with farther bands. Therefore,
it can be concluded that discontinuous bands with different
ranges of wavelengths cannot be grouped into one cluster for
band selection. For instance, in the Indian Pines dataset (see
Section I'V-A for a dataset detail), it totally has 200 bands. If we
use a clustering algorithm to select a band subset, the band of
index 1 and the band of index 200 cannot be classified into one
class.

Motivated by the above descriptions, we believe that the
hyperspectral image cube is divided into several subcubes, which
can effectively avoid the above dilemmas. Moreover, the infor-
mative band should be selected as the representative band in
each subcube. Based on these facts, in this article, we propose a
novel approach for hyperspectral band selection via an adaptive
subspace partition strategy (ASPS). The main contributions are
as follows.

1) An ASPS is proposed to search unrelated hyperspectral
subcubes. Based on the fact that adjacent bands have high
redundancy, the ordered hyperspectral bands are parti-
tioned into multiple subcubes by the clustering algorithm,
which can effectively avoid obtaining a subset with high
correlation.

2) An efficient band noise estimation method is used to
select a band with minimum noise in each subcube as
the representative band. The band image is divided into
small blocks of the same size, and the noise level of the
band image is estimated through the distribution of local
variance to measure the contribution of the band, thereby
realizing the selection of high-quality band images.

3) Through adaptive subspace partition, the obtained sub-
cube can be regarded as a general framework, which
means that the representative band in each subcube can be
selected by other criteria. A variant method of selecting
bands by using information entropy is presented in this
article. Extensive comparative experiments verify that the
variant method has outstanding performance and is robust
enough across different datasets.

The remainder of this article is organized as follows. In
Section II, several band selection methods are introduced,
including clustering-based methods and ranking-based meth-
ods. Section III presents the detailed descriptions of the pro-
posed method about the subspace partition strategy and band
noise estimation. After that, the evaluation experiments, which
are conducted on different public datasets, are described in
Section IV. Finally, conclusions are given in Section V.

II. RELATED WORK

The unsupervised band selection methods mainly include
clustering-based and ranking-based methods. The methods
based on clustering divide different properties into multiple
groups so that there is low correlation between groups. The

methods based on ranking use some criteria to assess the impor-
tance of each hyperspectral band and select top-rank bands as a
subset. Next, the two kinds of typical methods will be described
in detail.

A. Clustering-Based Methods

Clustering-based methods [25], [30] regard each band as
a point and use Euclidean distance or other criteria to judge
the similarity between any two bands. Then, some clustering
algorithms are used to make the bands with high correlation into
one class. Generally, the nearest band to the center is chosen as
the representative band in each group. In the following, several
typical methods will be briefly described.

In [25], the hierarchical clustering structure is adopted to
make the ratio of interclass variance and intraclass maximum
to cluster hyperspectral bands. Unlike other clustering methods,
this method uses mutual information or Kullback-Leibler to
measure the similarity among bands. Although this method con-
siders both information and correlation, the results are not good,
especially for noisy datasets. Wang ez al. [30] propose an optimal
clustering framework for hyperspectral band selection. This
method is to partition hyperspectral bands into multiple groups
by dynamic programming, and one band is selected in each
group individually by applying the score that is computed by fast
density-peak-based clustering or other approaches. Compared
with most algorithms, this partition way requires appropriate
computational time to perform dynamic programming when
more bands are chosen. In addition, the recommended bands
are calculated by the variance-based band-power ratio, but it
is clearly not appropriate because the currently selected subset
may not contain a subset of the previous bands.

B. Ranking-Based Methods

Ranking-based methods [31], [32] mainly have two steps. The
first step is to quantify the importance of each band by function,
such as information entropy [33]. The second step is to rank the
quantized result of each band to obtain a subset according to the
number of selected bands. The typical methods are information
divergence [31], constrained band selection [31], and maximum-
variance principal component analysis (MVPCA) [14]. Here, we
will discuss three representative methods.

Information divergence in these methods is often used to
evaluate image quality according to Gaussian probability dis-
tribution. It tries to select the most non-Gaussian bands as a
subset, which can effectively reflect the amount of informa-
tion contained in spectral bands. Constrained band selection
sets the objective function to minimize the constrained corre-
lation among bands. Specifically, the method changes a band
to be target signature vector while considering other bands as
unknown signature vectors. Then, the concept of constrained
energy minimization is adopted to linearly constrain this band
and minimize the correlation with other bands. MVPCA builds
a covariance matrix in accordance with the hyperspectral data.
The eigenvalues and eigenvectors are solved for the matrix and
construct a loading factor matrix. Finally, the variances of all
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with the same size, and the clustering algorithm is adopted to accurately get subcubes with different sizes. Then, the band with minimum noise in subcube is

selected as band subset.

bands are arranged in descending order. All of these methods
have a common shortcoming that the selected bands may have
highly correlated. Moreover, as for MVPCA, it has changed
original features of the hyperspectral data.

As introduced in Section I, the selected bands should have
lower correlation and more discriminative information. But each
of the above methods only meets one of the principles for band
selection, so we combine the advantages of the two kinds of
methods to achieve band selection by dividing cube into multiple
subcubes and selecting the representative bands in subcubes,
It not only reduces the data dimension of hyperspectral image
cube, but also retains more complete and useful information.

III. PROPOSED METHOD

In this section, we detail the proposed framework, namely
ASPS_MN, whose flowchart is shown in Fig. 1. The basic idea
is to treat hyperspectral bands as ordered and then adaptively
divide the bands with similar spectral characteristics into one
subcube. The band with minimum estimated noise is selected as
the representative in each subcube. A detailed description of the
two parts is given in the following sections.

A. Adaptive Subspace Partition Strategy

Considering that the correlation of adjacent bands is higher
than that of nonadjacent bands, the ASPS is adopted to divide
the hyperspectral image cube. As described in Section I, we can
use the clustering algorithm to realize spatial partition. But if
we directly employ the clustering algorithm to implement, it
will result in greater time complexity. In order to partition the
hyperspectral image cube faster, the proposed method uses the
coarse-fine strategy, which mainly consists of the following two
steps.

1) Coarse Subspace Partition: Let X € RW>*H*L denote
the hyperspectral image cube, where L is the number of total
spectral bands, and the width and height of each band are I/
and H, respectively. One of the purposes of band selection is
to reduce computational time. Hence, in order to implement
the clustering algorithm faster, the hyperspectral image cube is
divided into finite subcubes by equal width according to the

number of selected bands. Here, the number of bands in each
subcube P; is defined as

L
Z=% (M

where K is the number of selected bands. This way is an initial
partition and can obtain subcubes P; € R"W*H*Z

2) Fine Subspace Partition: To accurately represent spectral
bands belonging to each subcube P;, we propose a fine subspace
partition method to acquire new subcubes. In detail, the matrix
of each spatial band is stretched to a one-dimensional vector;
thus, we get

L] @

where z; , and x; is the stretched band vector of
the ¢th band. Following the stretched band vector, a similarity
matrix between the sth band and jth band is constructed by the
Euclidean distance, which can be done by

X = [(El,xz,...

c RWH><1
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In clustering algorithms, a common method is that the intra-
class and interclass are applied to analyze problems. Specifically,
the final clustering results are obtained by maximizing the ratio
of interclass distance to intraclass distance. For the hyperspectral
image cube that has been partitioned, we further utilize this idea
to accurately partition this cube. Since the correlation between
two subcubes far apart is small, we only consider the relationship
between two adjacent subcubes (P; and P;;;). Therefore, a
general form of the objective function is given as

Dinter (4)

intra

arg max

where Diyer and Di,ya are interclass distance and intraclass
distance, respectively, and ¢ denotes the partition point. In the
computation of interclass distance, we choose the maximum
distance as a criterion to measure the relationship between the
two classes. It is defined as

Dinter = maX|Dij| (5)
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Fig. 2. Example to partition the hyperspectral image cube (eight bands) into

four subcubes. Within the dashed line, the dark blue region indicates that only
these adjacent bands are considered to update the current partitioned point.
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Fig. 3. Noise estimation for one band on Indian Pines dataset.

where 1 < ¢ < j < 2Z. Forintraclass distance D, it contains
two parts: Uy of the subcube P; and Us of the subcube P, 1,
which can be denoted as the sum of intraclass distance of two
subcubes, i.e.,

Dintra = Ul + U2~ (6)
Specifically, two parts are written as

1
mZZDw @)

i=1 j=1

U, =

1 2Z 27
"=z nez=i—9) Z Z Dy ®
i=t+1 j=t+1

The first accurate partition point is obtained by the above
equations instead of the original partition point. Accordingly,
we use the previous partition point to update the initial point ¢ in
the same way to get the final segmentation point (see Fig. 2). This
partition method can make the correlation low between obtained
subcubes, which can effectively avoid the selection of redundant

bands. It satisfies one of the principles of band selection.

B. Band Noise Estimation

Most algorithms select informative bands by information
divergence, but when there are noises in the band image, reliable
results cannot be obtained so as to affect the subsequent analysis.

Inspired by this analysis, we can choose the band image with
minimum noise in each subcube. The method for calculating
noise is usually to decompose the image into two parts: clean
image and noise image. However, this method takes a lot of
time to conduct, which does not meet the purpose of low time
complexity for band selection. Therefore, this article avoids
direct image decomposition and uses local variance to estimate
the noise level of each band image in accordance with Gao’s
method [34]. Then, the representative band with minimum noise
in each subcube is chosen as the selected band.

1) Local Variance of the Hyperspectral Image: Following
the approach of Coakley and Bretherton [35], each band image
is first divided into small blocks of the size B x B pixels, such as
3 x3,...,0r 10 x 10 pixels. For the hyperspectral band image
that cannot be completely partitioned, it is a common practice
to remove some columns or rows of the band image until all the
blocks of the same size are segmented, which does not influence
the experimental results [36].

Since some blocks have similar spectral characteristics, in
order to accelerate the processing speed of the algorithm, we
randomly select M blocks from the original blocks. Although
this treatment trades off speed for performance, overall, it has
a little impact on the performance of our method. For a band,
the local mean and local variance of each block are calculated
according to

1 &
i=1
1 &
- o 2
LV = = ;:1 (S; — LM) (10)

where B? is the number of pixels, and S; is the value of the ith
pixel in the block.

2) Weight Computation: After calculating the variance, the
corresponding values of M blocks are acquired for each band
image. Next, the noise of band image is estimated from the
variance values for the small blocks. Because the variance of
some blocks is much greater than that of others (homogeneous
blocks have small variance values, inhomogeneous blocks have
large variance values), if these values are directly handled by
calculating average value, this will result in a poor estimation.
To deal with this trouble, the difference between the maximum
and minimum values of M blocks for each band image is divided
into k bins with equal width (see Fig. 3), i.e.,

k = (maxV — minV)/« (11)

where maxV is the maximum variance, minV denotes the
minimum variance, and « stands for the partition granularity
(a = 3inour article). This approach is very much like acquiring
mode. Then, M blocks are allotted into these bins in accordance
with the values of local variance, and the number of blocks in
each bin is counted. The bin with the largest number of blocks
corresponds to the estimated noise of band image. All band
images are treated in the same way, and the noise of each band
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Algorithm 1: Framework of ASPS_MN.

Input: Hyperspectral image cube X € RW*H*L the
number of selected bands K, the size of block B x B, the
number of block M.

Output: Selected subset Y.

1:  Coarsely divide hyperspectral image cube to obtain

subcubes P; € RW>HxZ

2:  Stretch each spatial band image into one-dimensional
vector ;.

3:  Construct similarity matrix D;; by the Euclidean
distance.

4:  Apply (4) to fine partition subspace.

5: Divide band image into the blocks of equal size with
B x B pixels, and calculate local mean and local
variance of each band image.

6: Estimate noise level /V by the distribution of the
minimum and maximum variance.

7. Select band with minimum noise in each subcube P; to
be subset Y.

8: returnY.

image is obtained, i.e.,

N =[Ny, Nay,...,Ng]. (12)
The band containing minimum noise is regarded as the most
representative band in each subcube. Finally, a desired subset Y’
containing K bands is selected as the target bands.

For more details about the framework, the procedures are

summarized in Algorithm 1.

C. General Framework

As shown in the above method, the band selection is per-
formed in two parts: adaptive subspace partition and band noise
estimation, which means that the representative band in each
subcube can be selected in other ways to replace band noise
estimation. From this point of view, the ASPS can be considered
as a general framework for band selection. We can obtain the
variant versions of ASPS_MN. For instance, the information
entropy is one of the ways to measure the bands in subcube,
where the name of the variant method is ASPS_IE. As for
ASPS_IE, the information entropy is defined as follows:

=-> pl2)

zeQ

) log p(z (13)

where () is the grayscale color space, and p(z) represents
the probability of the occurrence of event z appearing in the
image, which can be obtained from the grayscale histogram.
The information entropy is used to measure the average amount
of information contained in an image. Generally speaking, the
larger the information entropy, the richer the image information.
Thus, based on this point, the band with the largest amount of
information in subcube is to be the desired band.

D. Time Complexity Analysis

The implementation of the two versions of the proposed
method mainly consists of two steps: adaptive subspace partition
and representative band selection in each subcube. In the follow-
ing, we analyze the time complexity of the proposed method for
each step.

1) Subspace Partition: In this step, the subspace partition
mainly consists of two parts: coarse subspace partition and fine
subspace partition. Specifically, for the coarse subspace partition
section, the hyperspectral image cube in space is divided into
several subcubes P; € R >*H*Z by equal width, which takes
almost no computing time. For fine subspace partition, a simi-
larity matrix is first constructed by Euclidean distance. Equation
(4) is then applied to perform fine subspace partition. The time
complexity of a fine partition operation costs O(L*W H). For
these two parts, the total time complexity of adaptive subspace
partition takes O(L*W H).

2) Representative Band Selection: In order to obtain the
desired band in each subcube, we propose two approaches. One
is to select band with minimum noise. We conduct the mean and
variance of M blocks picked from the original blocks. Addition-
ally, the noise of the band image is estimated in accordance with
the distribution of these variances. The time complexity of this
part mainly depends on the size of block B x B and the number
of selected blocks M. Therefore, O(M B?) time is needed for
this part. The other is to select the band with the largest IE, whose
time complexity is O(LW H).

For ASPS_MN and ASPS_IE, their total time complexi-
ties are O(L*W H + M B?) and O(L*W H + LW H ), respec-
tively. It can be seen that the time of both versions is acceptable
for most the applications. Since M B? < LW H, it is apparent
that ASPS_MN is the fast version that has much better compu-
tation efficiency than ASPS_IE.

IV. EXPERIMENT

In this section, we implement extensive experiments to assess
the superiority of the proposed algorithm in the context of the
hyperspectral image. First, three public hyperspectral image
datasets are introduced. Then, we briefly explain the basic prin-
ciple of the comparison methods. Next, the experimental setup
is described from three aspects, including classification setting,
number of selected bands, and accuracy measures. Finally, the
experimental performance of several methods is conducted in
detail to verify the effectiveness and advantages of ASPS_MN
and ASPS_IE.

A. Datasets

1) Indian Pines Scene: The Indian Pines scene was collected
by the AVIRIS sensor in 1992. AVIRIS captures 224 spectral
bands with the size of 145x 145 pixels from 0.4 to 2.5 um.
The band consists of 16 classes of land cover objects of interest.
Some bands (104—-108, 150-163, and 220) produce large noises
because of water absorption, so we discard these bands and
finally get 200 bands in the experiment. The image and the
corresponding groundtruth are shown in Fig. 4.
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Fig. 4. Color image and groundtruth map on the Indian Pines dataset.
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Fig. 5. Color image and groundtruth map on the Pavia University dataset.

2) Pavia University Scene: The Pavia University scene was
acquired by the ROSIS sensor over Pavia in 2002. Similar to the
Indian Pines dataset, the remaining number of spectral bands is
103 after removing some bands with lower SNR, and the size of
each band is 610 x 340 pixels. The groundtruth of this dataset
includes nine classes of interest, whose details are described in
Fig. 5.

3) Salinas Scene: The Salinas scene was gathered by the
AVIRIS sensor over Salinas Valley, CA, USA, in 1998. This
dataset is characterized by a high spatial resolution (3.7-m
pixels) and has 224 spectral bands with the size of 512 x
217 pixels. There are 16 classes of interest, which is introduced
in Fig. 6.

B. Comparison Methods

To investigate the performance of the proposed method
(ASPS_MN and ASPS_IE) in each dimension, five state-of-
the-art algorithms that perform band selection using no labeled
information are compared with the proposed method, where we
briefly introduce these competitors in the following.
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I Vinyard_untrained
I Vinyard_vertical_trellis

Fig. 6. Grayscale image and groundtruth map on the Salinas dataset.

1) TRC-OC-FDPC [30]: This method uses dynamic pro-
gramming to divide hyperspectral image cube into multiple
subcubes, and one band is selected in each class individually
by applying the score that is computed by E-FDPC [11]. To
simplify the name of the algorithm, TRC-OC-FDPC is written
as TOF in our article.

2) MDSR [36]: Using a multidictionary learning mecha-
nism, each band is expressed by the linear combination of other
bands. The first several bands with large weight are chosen by
reckoning sparse coefficient.

3) WaLuDi [25]: By constructing the Kullback-Leibler
divergence matrix, hierarchical clustering is performed to ac-
quire representative bands in accordance with intraclass and
interclass variance.

4) RMBS [37]: A representation matrix is determined by the
rank minimization constraint and is utilized to define the affinity
matrix to pick out informative bands.

5) UBS [31]: According to the number of selected bands,
the hyperspectral image cube is divided into multiple subcubes
at equal width, and each segmentation point is viewed as the
selected band.

C. Experimental Setup

1) Classification Setting: In the experiment, three typical
classifiers, including k-nearest neighborhood (KNN), support
vector machine (SVM), and LDA, are employed to assess the
classification performance of several band selection algorithms
from various dimensions. Next, we will briefly explain the char-
acteristics and parameter setting of the three classifiers. KNN is
the simplest classifier in machine learning, which determines
the sample category according to the category of K similar
training data. In the following experiments, the parameter K
is set to 3 for all classification validation experiments about
KNN. For the SVM classifier, it is a discriminant classifier
defined by classification hyperplane. That is to say, given a set of
labeled training samples, the algorithm will output an optimal
hyperplane to classify the new samples (test samples). In our
experiments, the SVM classifier is conducted with the RBF
kernel, and the penalty C and gamma of the three datasets are
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TABLE I
OA FOR ANALYZING THE IMPACT OF THE SIZE AND NUMBER OF BLOCKS ON THREE DATASETS

Data set BxB ‘ M ‘ 5 7 10 15 20 25 30 35 40 45 50 55 60
10% 64.51 6525 6678 6896 70.37 7046 69.69 7021 70.12 70.80 70.12 70.13 70.41
3%3 20% 63.62 6675 6551 69.57 69.75 6825 69.01 71.03 70.12 70.71 70.71 7149  69.62
50% 6434 68.04 6621 6838 68.60 6847 6857 69.74 70.65 6998 69.99 70.58  69.88
Indian Pines 100% | 65.14 6525 66.82 67.06 66.51 70.04 69.44 6792 6897 6951 7034 71.08 69.71
10% 62.02 62.82 6381 68.82 7098 69.73 7070 69.29 69.70 68.09 70.05 70.60 71.58
1010 20% 6238 6231 6561 6956 69.25 69.66 69.70 7023 70.85 71.08 71.08 7146 70.73
50% 61.10 6345 6495 6894 68.60 6885 6940 6837 6992 7051 7090 70.32 70.86
100% | 6198 6331 6490 69.10 68.69 6931 70.62 67.16 6995 70.01 69.84 69.71 69.51
10% 83.19 8456 8595 85.66 8570 87.01 8742 8635 86.74 86.82 87.03 86.79 86.63
3%3 20% 83.64 8355 8536 8655 8534 86.55 8597 8696 86.62 8690 87.69 86.69 86.88
50% 82.53 8447 86.01 8571 8507 86.57 8643 8698 86.86 87.09 86.89 86.62 86.77
. L 100% | 82.87 82.77 8531 8573 8530 86.33 86.63 86.13 86.77 86.41 8721 87.12 86.32
Pavia University
10% 82.65 83.60 85.66 86.83 8554 86.03 8735 86.42 8692 87.66 8696 87.13 86.83
1010 20% 8430 85.13 8433 8553 8738 8642 86.55 8646 8649 8649 87.61 86.62 86.95
50% 82.14 8258 8632 8773 8560 85.85 86.65 8621 86.86 87.09 8775 86.64 86.52
100% | 84.03 83.26 87.07 87.06 86.59 87.01 87.16 8699 87.27 8691 8750 86.99 86.86
10% 84.66 8639 8840 89.27 8948 89.55 89.78 89.40 89.33 8991 90.01 8996 89.45
353 20% 84.54 88.79 8838 89.15 89.09 89.38 89.89 8992 89.54 8993 89.84 89.78 89.74
50% 84.43 86.64 8791 89.25 89.17 89.41 8934 89.64 8935 8949 89.70 89.82  89.60
Salinas 100% | 84.95 8575 88.05 89.63 89.34 89.06 89.61 89.69 89.36 8991 89.67 90.04 89.74
10% 8394 86.18 8835 89.72 8937 89.15 89.51 8945 8934 8940 89.77 89.28 89.77
10%10 20% 84.66 8592 87.88 89.43 8920 8944 89.80 8992 89.28 89.88 89.67 89.69 89.43
50% 83.80 87.51 88.16 8892 8943 89.11 89.14 8954 89.73 89.88 89.92 89.71 89.49
100% | 84.36 86.64 87.71 8952 89.23 89.13 89.77 8947 89.51 8941 89.63 89.84 89.71

initializedto 1 x 10* and 0.5, respectively. The principle of LDA
is to project the labeled data (points) into the lower dimensional
space through the projection method so that the projected points
can be classified. Note that this classifier is parameter free.

Additionally, since we mention that these classifiers are super-
vised, 10% samples from each class based on selected bands are
randomly chosen as the training set; the remaining 90% samples
are used for test. Moreover, in order to reduce the influence of
random selection of 10% samples, the algorithm runs ten times
to obtain the average results. Figs. 4-6 display groundtruth maps
containing each class for three datasets.

2) Number of Selected Bands: Because the desired number
of bands that should be selected is unknown in practice for three
public hyperspectral image datasets, we implement experiments
in the range of 5-60 bands to explain the influence of different
numbers of bands on classification accuracy.

3) Accuracy Measures: Three methods of accuracy measure
are conducted to analyze the precision of the classified pix-
els. They are overall accuracy (OA), average overall accuracy
(AOA), and kappa coefficient (Kappa).

D. Results

In this article, in order to investigate the effectiveness and ad-
vantages of the proposed method, we provide detailed analyses
on three datasets from four aspects, including number and size
of blocks, classification performance, and computational time.

1) Number and Size of Blocks Analysis: In the proposed
band selection method, each band image needs to be divided
into small blocks B x B with the same size during estimating
the band noise. Moreover, in order to accelerate the execution

of the algorithm, we randomly pick M blocks to perform our
method. In this section, for illustrating the impact of the number
and size of blocks on classification accuracy, we set the size
of blocks to 3 x 3 and 10 x 10 pixels and choose 10%, 20%,
50%, and 100% blocks from all the blocks for the experiments.
Table I provides the classification results for KNN classifiers
on three datasets by selecting different numbers of selected
bands (the range of 5-60). From this table, one can observe that
the OA hardly changes through setting differently the number
and size of blocks at every selected band, and only fluctuations
occur while selecting a small number of bands. Overall, these
two hyperparameters do not affect our algorithm very much.
Therefore, from the experiments on three hyperspectral image
datasets, some crucial results can be summarized. Whatever the
size and number of the block are, the proposed method can
obtain stable classification performance by several classifiers
across different datasets on the whole. Consequently, during
estimating the band noise, in order to facilitate the evaluation
of the following comparative experiments, for Pavia University
and Salinas datasets, we empirically set the size of block to be
10 x 10 pixels and randomly pick 10% blocks, and for the Indian
Pines dataset, these parameters are set to 3 x 3 and 10%.

2) Classification Performance Comparison: To fully show
convictive results of the proposed method compared with five
state-of-the-art algorithms, three classifiers are employed to ana-
lyze the hyperspectral image by using three accuracy evaluation
criteria. Moreover, all bands are also taken into account for
performance comparison.

For the Indian Pines dataset, Table II reveals the AOA and
Kappa by selecting different numbers of bands (the range
of 5-60) for the classification results. To clearly show the
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TABLE II

Data set Classifier TOF MDSR WaLuDi RMBS UBS ASPS_MN  ASPS_IE
(Measure)

KNN(AOA) | 68.01£0.13 56.00+1.03 66.85+0.10 67.0420.15 67.10£0.18 68.88+0.11  67.22-0.10
KNN(Kappa) | 65.70+0.14  49.68+1.19  62.1940.17 62254022 61.45+0.16 64.34+0.13  63.45+0.13
Indian | SVM(AOA) | 783140.18 67304054 77.58+0.18 78.1340.46 78344016 78.8740.29 78.34+0.14
Pines | SVM(Kappa) | 75.0040.18  61.7240.67 74244020 74074056 75.0040.19 75134036 75.09--0.17
LDA(AOA) | 69.6710.09 5958039 69.0210.08 69434024 69.9310.10 69.46£0.32  68.66+021
LDA(Kappa) | 66.55£0.09 53.09+0.46 6549+0.10 66.00£027 6536+0.12 66.93+£0.37  65.01+0.24
KNN(AOA) | 84.58+0.04 84364029 84.97+0.06 83994035 85.08+0.05 86.23+0.13  86.17--0.04
KNN(Kappa) | 79.0440.06 78.7240.40 79.6140.09 78204049 79.7240.06 81.34+0.18  81.26:-0.07
Pavia SVM(AOA) | 90.64+0.02 90824031 91.36+0.07 90461028 91.06£0.02 91.4410.25 90.54+0.10
University | SVM(Kappa) | 87.3940.03  87.640.46 88.4140.10 87.09+042 87.97+0.03 88.90+0.36 87.21+0.15
LDA(AOA) | 80.7410.08 80.1740.28 80.9410.05 81.04+022 81.85+0.05 81.45+0.14 80.97+0.08
LDA(Kappa) | 74.7040.10 73374038 75014006 74.39+0.35 75.60+0.06 75.55+£0.19 74.3240.11
KNN(AOA) | 88.05+0.05 85.76+0.73 88.04+0.01 88.1440.17 86.94+£0.05 88.27+0.13 88.16--0.03
KNN(Kappa) | 86.4840.05 83.17+0.82 85.03+0.01 84.5340.19 85.38+0.06 87.6240.14  87.56:-0.03
Sulings | SYM(AOA) [ 0092003 89764072 O103£001 91085028 9025£0.03 9092+0.13 91.27:0.04
SVM(Kappa) | 90.2540.04  86.820.84 90.21+0.01  89.96+033 90.17+0.04 90.67+0.15  91.11-0.05
LDA(AOA) | 87.0310.03 85454067 87301002 87914028 87.1840.06 87.45£0.05 87.67+0.01
LDA(Kappa) | 85.94+0.03 83.78+0.77 86.0840.02 85.86+0.33 86.0240.07 86.14-0.06  86.24+0.01

The numbers in bold represent the two better classification performances.
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influence of different numbers of selected bands, we provide
OA results for every five bands (see Fig. 7). From this figure,
it is explicitly observed that the proposed method can outper-
form the other methods at some selected bands, especially for
ASPS_MN. More specifically, among all methods, the results
selected by MDSR are significantly lower than other methods
across different datasets. When the number of bands reaches 20,
ASPS_MN can exceed stable performance. With respect to LDA
and SVM classifiers, the difference in results is not obvious, and
other competitors achieve satisfying results, except for MDSR.
In addition, as can be seen from Table II, the superiority of
ASPS_MN is more evident with AOA and Kappa, and ASPS_IE
obtains comparable results, which is exactly consistent with the
above analyses. To sum up, the proposed method is better than
some compared methods in terms of three accuracy measures.
For the Pavia University dataset, it is clear from Fig. 8 and
Table II that our method exhibits the better results in OA com-
pared with most algorithms, and the classification accuracy of

(d)

(©)

OA for three classifiers by selecting different numbers of bands on the Indian Pines dataset. (a) OA by KNN. (b) OA by SVM. (c) OA by LDA.

AOA and Kappa obtained by ASPS_MN and ASPS_IE also
achieves relatively satisfying results. In Fig. 8(a), when the num-
ber of selected bands is small, the accuracy of some algorithms
is unstable, particularly for RMBS and MDSR. But when the
number of selected bands goes beyond 15, all competitors work
very well. Meanwhile, our method still performs quite well,
and its accuracy exceeds the accuracy of all bands at certain
locations. When it comes to other classifiers, compared with the
Indian Pines dataset, the advantage of the two versions of the
proposed method is not greatly obvious. Overall, ASPS_MN
also displays the best performance, but the results of ASPS_IE
are not very ideal. As for other competitors, the OA grows
steadily by increasing the number of selected bands.

For the Salinas dataset, the two versions of the proposed
method also outperform the other methods in each dimension for
three classifiers (see Fig. 9 and Table II). More specifically, in
Fig. 9, our method produces higher OA compared with the other
band selection methods for the same numbers of selected bands
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TABLE III
PROCESSING TIME OF DIFFERENT BAND SELECTION METHODS TO SELECT PROPER NUMBER OF BANDS ON THREE DATASETS

Data set TOF MDSR WalLuDi RMBS  UBS  ASPS_MN (10%) ASPS_MN (100%) ASPS_IE
(Number of bands)
Indian Pines 0.649s 02055  7.507s  43.618s  0.009s 0.915s 6.785s 0.409s
(15 bands)
Pavia URVEISIy 1 7010 02085 267755 2003965 0.009s 0.895s 3.4405 13215
(10 bands)
Salinas 1356s  0313s  40357s  265.555s  0.003s 1.128s 5.884s 1.403s
(15 bands)

when the KNN classifier is used. When the number of selected
bands is small, the result curves of MDSR, UBS, and RMBS
fluctuate greatly, especially for MDSR. While the SVM classifier
is employed, the difference except MDSR is not so obvious.
All the other algorithms have approximately the same results
at every selected band. As for the LDA classifier, the results
are similar to those obtained by the SVM classifier. However,
when picking five bands, our method shows best classification
performance. Furthermore, there is still a certain gap compared
with the classification results of all bands at each location.

By conducting extensive experiments on three hyperspectral
image datasets, most competitors exhibit bad accuracy on the
Indian Pines dataset, but classify the pixels more precisely on
other datasets. This is mainly due to the selection of noisy bands
on the Indian Pines dataset, even if some bands are removed. As

for our proposed method, it has absolute superiority on the Indian
Pines dataset. It indicates that our method can deal with noisy
dataset well. To sum up, the two versions of the proposed method
overall obtain excellent and stable performance across different
datasets, which verifies that our approach is robust enough for
band selection.

3) Computational Time Comparison: In order to verify the
effectiveness of the proposed method, the computational time
of all competitors is conducted on three datasets. For fair
comparison, all methods are performed in MATLAB 2016a
with PC workstation (Intel Core i5-3470 CPU processor and
16-GB RAM). Table III shows the execution time by differ-
ent band selection methods to select proper number of bands
on different datasets. From the results, the processing time
needed by WaLuDi and RMBS is far greater than that of other
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algorithms, particularly for RMBS, which is caused by imple-
menting Kullback-Leibler divergence and singular value de-
composition, respectively. Additionally, compared with other
methods, the computational cost of UBS is much less but has
poor classification results. This is mainly because it is the
simplest method of comparison; only selecting points with equal
width are viewed as the selected bands. Although MDSR has a
relatively faster processing time, it does not classify pixels very
well for classification tasks. As for the version of the proposed
method, namely, ASPS_IE, it is relatively time-consuming but
more accurate than TOF, and thus, a little more time cost is
acceptable. For some methods with higher accuracy, ASPS_MN
not only can execute faster, but also achieve excellent classifi-
cation performance than others. Moreover, we also show the
influence of selecting 10% and 100% blocks on execution time.
It can be seen that the number of blocks has a great impact on
the algorithm execution time. To sum up, the proposed method
has a great advantage in time efficiency while satisfying better
performance in classification accuracy.

V. CONCLUSION

Many clustering algorithms only consider the redundancy
between bands in the calculation. In addition, it is not found
that these bands of the hyperspectral image cube are ordered.
Therefore, in this article, we develop a novel approach via adap-
tive subspace partition to select some informative and distinctive
bands from the original hyperspectral bands.

The ordered hyperspectral cube in space is partitioned into
multiple subcubes by the clustering method to generate a general
framework. It effectively avoids selecting a subset with high
correlation. To obtain the informative bands, we estimate band
noise in each subcube in terms of the local variance to select a
band with minimum noise as a representative band. The above
two contributions not only greatly reduce the data dimension of
the hyperspectral image cube, but also retain more complete
and useful information, which conforms to the principles of
band selection. The last contribution is to produce the variant
versions of the proposed method. This article only shows one
variant method, ASPS_IE, to measure the band with the amount
of information in subcube. Extensive experimental results on
three public hyperspectral image datasets demonstrate that the
two versions of the proposed method exhibit more robust and
effective performance than other competitors.

In future work, we will extend the proposed method in two
directions. One is to obtain the recommended number of selected
bands. The second is to speed up the execution of the algorithm.
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